A Soluble Guanylate Cyclase Activator Inhibits the Progression of Diabetic Nephropathy in the ZSF1 Rat.
نویسندگان
چکیده
Therapies that restore renal cGMP levels are hypothesized to slow the progression of diabetic nephropathy. We investigated the effect of BI 703704, a soluble guanylate cyclase (sGC) activator, on disease progression in obese ZSF1 rats. BI 703704 was administered at doses of 0.3, 1, 3, and 10 mg/kg/d to male ZSF1 rats for 15 weeks, during which mean arterial pressure (MAP), heart rate (HR), and urinary protein excretion (UPE) were determined. Histologic assessment of glomerular and interstitial lesions was also performed. Renal cGMP levels were quantified as an indicator of target modulation. BI 703704 resulted in sGC activation, as evidenced by dose-dependent increases in renal cGMP levels. After 15 weeks of treatment, sGC activation resulted in dose-dependent decreases in UPE (from 463 ± 58 mg/d in vehicle controls to 328 ± 55, 348 ± 23, 283 ± 45, and 108 ± 23 mg/d in BI 703704-treated rats at 0.3, 1, 3, and 10 mg/kg, respectively). These effects were accompanied by a significant reduction in the incidence of glomerulosclerosis and interstitial lesions. Decreases in MAP and increases in HR were only observed at the high dose of BI 703704. These results are the first demonstration of renal protection with sGC activation in a nephropathy model induced by type 2 diabetes. Importantly, beneficial effects were observed at doses that did not significantly alter MAP and HR.
منابع مشابه
A Soluble Guanylate Cyclase Activator Inhibits the Progression of Diabetic Nephropathy in the ZSF1 rat Authors:
متن کامل
Protective effect of forskolin on diabetes induced nephrophaty via antioxidant activity
The present study aimed to investigate the role of adenylyl cyclase activator in preventing diabetic nephropathy via antioxidant activity in rats. Biochemical parameters were performed to confirm Streptozotocin induced nephropathy in rats. Male Wistar rats were used in the present study to reduce the effect of estrogen. Rats were subjected to high fat diet (HFD) for two weeks followed by low do...
متن کاملIncreased Cytochrome P4502E1 Expression and Altered Hydroxyeicosatetraenoic Acid Formation Mediate Diabetic Vascular Dysfunction
OBJECTIVE We investigated the mechanisms underlying vascular endothelial and contractile dysfunction in diabetes as well as the effect of HMR1766, a novel nitric oxide (NO)-independent activator of soluble guanylyl cyclase (sGC). RESEARCH DESIGN AND METHODS Two weeks after induction of diabetes by streptozotocin, Wistar rats received either placebo or HMR1766 (10 mg/kg twice daily) for anothe...
متن کاملAdditional stimulation of sGC on top of standard treatment with ARB`s may offer a new therapeutic approach for the treatment of diabetic nephropathy resistant to ARB treatment alone
Background Riociguat is the first of a new class of drugs, the soluble guanylate cyclase (sGC) stimulators. Riociguat has a dual mode of action: it sensitizes sGC to the body’s own NO and can also increase sGC activity in the absence of NO. The NO-sGC-pathway is impaired in many cardiovascular diseases such as heart failure, pulmonary hypertension and diabetic nephropathy (DN). DN leads to high...
متن کاملHigh resolution molecular and histological analysis of renal disease progression in ZSF1 fa/faCP rats, a model of type 2 diabetic nephropathy
ZSF1 rats exhibit spontaneous nephropathy secondary to obesity, hypertension, and diabetes, and have gained interest as a model system with potentially high translational value to progressive human disease. To thoroughly characterize this model, and to better understand how closely it recapitulates human disease, we performed a high resolution longitudinal analysis of renal disease progression ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 356 3 شماره
صفحات -
تاریخ انتشار 2016